Homework 6

P5.2.5 Determine V_{O} in Figure P5.2.5 using scaling.

Solution: Assume $I_{x}=1$ A; the dependent source is 4 A , the current in the 5Ω resistor is 5 A , and the voltage across it is 25 V . The voltage at the next node is 26 V and the current in the 26Ω

Figure P5.2.5
resistor is 1 A . The current in the 8Ω is 2 A , and the voltage at the next node is 42 V . The current in the 14Ω resistor is 3 A . The current in the 1Ω resistor is 5 A , and the voltage at the source is 47 V . Since the given source voltage is 4.7 V , all

voltages and currents are divided by 10 . The dependent source current is therefore 0.4 A , and $V_{O}=10 \times 0.4=4 \mathrm{~V}$.

P5.2.7 Determine I_{0} in Figure P5.2.7.

Figure P5.2.7
Solution: Initialize. All given values and the required I_{o} are entered. The nodes are labeled. Simplify. With $I_{X}=$ -3 A, the dependent
 source becomes an independent

Figure P5.2.7-1
source of 12 V and reversed polarity. The 10Ω resistor in parallel with the 30 V source and the 20Ω resistor in series with the 0.75 A source are redundant for the purpose of calculating I_{0} and are removed. The 15Ω and 13Ω resistances are combined into a 28Ω resistance, the circuit becoming as shown.

The circuit can be simplified to a single mesh circuit by successive source transformations, Thus, the 30 V source in series 50Ω is transformed to a 0.6 A current source in parallel with 50Ω. This, in parallel with 50Ω becomes 25Ω. The 0.6 A current source in parallel with 25Ω is transformed to a voltage source of 15 V in series with 25Ω. This, in series with 35Ω becomes 60Ω. The 15 V source in series with 60 Ω is transformed to a current source of 0.25 A in parallel with 60Ω. This, in parallel with 30Ω becomes 20Ω and the 0.25 A source is added to the 0.75 A source to give a 1 A source in parallel with 20Ω. This is transformed to a 20 V source in series with 20Ω, the circuit becoming as shown.

Figure P5.2.7-2

Deduce. It follows from KVL that $I_{O}=(12+20) /(20+15+13)=32 / 48=2 / 3 \mathrm{~A}$.

P5.2.25 Determine TEC between terminals 'ab' in
Figure P5.2.25, assuming all resistances are 5Ω.

Solution: When the 5 A source is applied alone, it follows from symmetry that $V_{a b}=0$. When the 12 V source is applied alone, it follows from symmetry that nodes ' d ' and ' f ' are at the same voltage, so that the resistor connecting these nodes does not carry current. When this resistor is removed and the 5 A source is set to zero, the resistance between nodes 'c' and ' d ' is $10|\mid 20=20 / 3 \Omega$. From voltage division, $V_{c e}=12(20 / 3) /(10$ $+20 / 3)=24 / 5 \mathrm{~V}$. From voltage division, $V_{T h}=V_{a b}=(24 / 5) / 2=2.4 \mathrm{~V}$.

When the sources are set to zero,

Figure P5.2.25

Figure P5.2.25-1
and a test voltage is applied to determine $R_{T h}$, it follows from symmetry, as argued previously, that the resistor connecting nodes ' d ' and ' f ' does not carry current and could be removed,, the circuit becoming as shown. It is seen that resistors R_{2} and R_{3} are short circuited, so that resistors R_{1} and R_{4} are in series. The resistance between nodes

Figure P5.2.25-2 'c' and 'e' is $10 \| 10=5 \Omega$. The resistance seen by the source is $R_{T h}=15 \| 10=6$ Ω.

P5.2.27 Determine $I_{S R C}$ in Figure P5.2.27, assuming all resistances are 1 Ω, except for the two 4Ω resistances indicated.

Figure P5.2.27
4Ω
Solution: From symmetry, the two nodes on either side are at the same voltage so that the resistors oriented vertically do not carry current and could be removed. Moreover, the circuit is symmetrical about the horizontal

Figure P5.2.27-1 midline and could be split into two half circuits, as shown in the figure for one half circuit. The resistance seen by the source in one half-circuit is $6 \| 3=2 \Omega$ and is 1Ω in the original circuit. It follows that $I_{S R C}=1 / 1=1 \mathrm{~A}$.

P5.2.28 It is seen from symmetry that nodes ' c ' and 'e' are at the same voltage, as are nodes ' d ' and ' f '. If nodes 'c'

(a)

Figure P5.2.28-1
(b) and 'e' are connected together, and nodes ' d ' and ' f ' are also connected together, $R_{a b}=2 \| 2$ $+2| | 4| | 4| | 3+2| | 2=1+2 / 3+1=8 / 3 \Omega$.

Note that in Figure P5.2.28-1a, nodes ' d ' and ' f ' can be connected together and then reconnected as shown in Figure P5.2.28-1b, without disturbing the circuit, since the voltages of nodes ' c ', ' d ', ' e ', and ' f ' remain the same. Then $4 \| 2$ $=4 / 3 \Omega$ and $R_{a b}=(1 / 2)(2+4 / 3+2)=8 / 3 \Omega$ as before.

P6.1.9 Determine the power delivered or absorbed by the current sources in Figure P6.1.9.
Solution: The node-voltage equations are:
Node 'a': $30 V_{a}-20 V_{b}-10 V_{c}=15$
Node 'b': $\quad-20 V_{a}+30 V_{b}-10 V_{c}=-30$
Node 'c': $-10 V_{a}-10 V_{b}+35 V_{c}=0$
Solving these equations gives $V_{a}=-1.3$ $\mathrm{V}, V_{b}=-2.2 \mathrm{~V}$, and $V_{c}=-1 \mathrm{~V}$; power delivered by 15 A source is $15 V_{a}=-19.5$ W , so the source actually absorbs 19.5 W ; power absorbed by the 30 A source is $30 \mathrm{~V}_{b}$ $=-66 \mathrm{~W}$, so that the source actually delivers 66 W .

Figure P6.1.9

P6.1.14 Determine V_{o} in Figure P6.1.14.
Solution: Taking the bottom node as reference makes $V_{a}=$ 10 V . The node-voltage equation for node b is: $-0.5 V_{a}+V_{b}=-5 I_{x}=-1.25 V_{c}$, or $V_{b}+1.25 V_{c}=5$.
The node-voltage equation for node c is: $0.25 V_{a}+0.5 V_{c}=1.25 V_{c}$. This gives $V_{c}=V_{O}=$ $-10 \times 0.25 / 0.75=-10 / 3 \mathrm{~V}$, and $V_{b}=5+1.25 \times 10 / 3=$

Figure P6.1.14

P6.1.28 Determine V_{O} in Figure P6.1.28 assuming that all resistances are 2Ω.

Solution: The resistance in series with the 5 A source is redundant as far as V_{O} is concerned, and the CCVS is equivalent to a 0.5Ω resistance. Making these changes, the circuit becomes as shown. The node voltage equations are:
Node 'a': $0.4 V_{a}-0.4 V_{d}=5-I_{X}$
Node 'c': $-0.5 V_{b}+1.5 V_{c}-0.5 V_{d}-0.5 V_{e}=I_{X}$; adding
 these two equations:
$0.4 V_{a}-0.5 V_{b}+1.5 V_{c}-0.9 V_{d}-0.5 V_{e}=5$, with $V_{a}-V_{c}=10$.

Node 'b': $V_{b}-0.5 V_{c}=-5$
Node 'd': $-0.4 V_{a}-0.5 V_{c}+0.9 V_{d}=0.5 I_{x}$, where $I_{x}=5$ $-0.4 V_{a}+0.4 V_{d}$, or

$$
-0.2 V_{a}-0.5 V_{c}+0.7 V_{d}=2.5
$$

Node 'e': $-0.5 V_{c}+1.5 V_{e}=0$. Solving these equations gives: $V_{a}=850 / 49 \mathrm{~V}, V_{b}=$

Figure P6.1.28-1 $-65 / 49 \mathrm{~V}, V_{c}=360 / 49 \mathrm{~V}, V_{d}=675 / 49 \mathrm{~V}$, and $V_{e}=120 / 49 \mathrm{~V}$. It follows that $V_{O}=V_{c}$ $-V_{e}=240 / 49=4.90 \mathrm{~V}$.

